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In this paper, the cascaded system is revisited with Kerr and power laws of nonlinearity. The spatio-temporal dispersion is 
included this time in order to make the model of study well-posed. Bright, dark and singular soliton solutions are obtained 
along with respective constraints. These integrability conditions must hold for the solitons to exist in a cascaded system. 
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1. Introduction 
 
Optical solitons is one of the most fascinating areas of 

research in the field of nonlinear optics. The study of 
bright, dark and singular solitons is of equal interest in this 
field. In the past few decades, there are a plethora of 
research results that are reported in several books and 
journals [1-20]. The main focus in those reports is 
polarization preserving fibers. It is equally important to 
focus on vector models that are studied in the context of 
birefringent fibers, Thirring solitons, cascaded systems, 
DWDM systems, optical couplers and many other areas.  

This paper will focus on obtaining soliton solutions to 
cascaded system where the model is considered with 
spatio-temporal dispersion (STD) in addition to group-
velocity dispersion (GVD). The inclusion of STD makes 
the model well-posed as indicated during 2012 [9, 12]. 
This model was studied earlier where cascaded system was 
integrated without STD. This paper is therefore a 
generalized version of earlier reported results. The 
governing equation is coupled nonlinear Schrödinger's 
equation (NLSE). The integrability aspect of the model 
will be focus of the paper. Bright, dark and singular soliton 
solutions to the model will be obtained. 

 
 
2. The model 
 
The dynamics of solitons in cascaded system is 

governed by coupled NLSE. The corresponding system in 
dimensionless form of this coupled NLSE is given by 

   
       0)( 2

111 =+++ qrFcqbqaiq xtxxt                   (1)
   

    0)()( 2
2

2
222 =++++ rrFdrqFcrbrair xtxxt  (2) 

 
Equations (1) and (2) represents the coupled NLSE 

where the functional F represents nonlinear media. This 
paper will only address Kerr law nonlinearity, also known 
as cubic nonlinearity and power law nonlinear medium. 
The variables ),( txq  and ),( txr are the two components 
of the wave profile in a cascaded system. The first terms in 
both components are the linear evolution terms. The 
coefficients of ja  for 2,1=j  represents GVD while the 

coefficients of jb  for 2,1=j  are the STD terms. 

Finally, the coefficients of jc  are the nonlinear terms that 
could be either Kerr or power law nonlinearity. 

This paper will focus the integrability aspect of the 
above model given by (1) and (2). While several 
algorithms of integrability exist in the literature, this paper 
will focus on the ansatz approach. This will lead to exact 
1-soliton solution to the cascaded system with STD. There 
will be a few constraint conditions that will appear. These 
constraints guarantee the integrability of the model. 
Bright, dark and singular soliton solutions will be retrieved 
for this model. The general integration scheme will be 
discussed in the next section. This will be followed by 
further details for the two forms of nonlinearity. 

 
 
3. Integration scheme 
 
To integrate the coupled NLSE (1)-(2) the starting 

assumption is a solution of the form 
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),(
1

1),(),( txietxPtxq φ=                     (3) 
 

),(
2

2),(),( txietxPtxr φ=                     (4) 
 

where ),( txPl , for 2,1=l , represents the amplitude 
component of the soliton solution, while the phase factor is 
given by 

 
jjjj txtx θωκφ ++−=),(                      (5) 

 
where 2,1=j .  Here jκ   is the frequency of the solitons 

while jω  represents the wave number and jθ  is the phase 
constant. Substituting (3)–(5) into (1) and (2) and then 
decomposing into real and imaginary parts gives 
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for the real portion, and for the imaginary part equations 
one have 
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The imaginary parts (8) and (9) lead to the speed of 

the solitons as 
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as long as the constraints 
 

111 ≠κb                              (12) 
 

122 ≠κb                              (13) 
 
are satisfied.  It must be noted that ),( txP   can be 
represented as )( vtxg −  where the function g  is the 

soliton wave profile depending on the type of nonlinearity, 
and v   is the speed of the soliton. Now, equating the two 
expressions for the soliton speed (10) and (11) leads to a 
constraint relation between the soliton parameters as 
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This constraint relation holds for both Kerr and power 

laws of nonlinearity as well as for bright, dark and singular 
solitons for all of of these two laws of nonlinearity. The 
real part equations given by (6) and (7) will now be 
analyzed separately in the next two sub-sections for the 
mentioned nonlinearities. 
 

3.1 Kerr law 
 

Kerr nonlinearity originates when light wave in an 
optical fiber is subjected to nonlinear response. In this 
case, ssF =)(   and consequently the model is (1)–(2) 
change to 
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111 =+++ qrcqbqaiq xtxxt             (15) 
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222 =++++ rrdrqcrbrair xtxxt        (16) 
 
The imaginary parts (8) and (9) are preserved as well 

as relations (10)–(14). For this case, the corresponding real 
parts (6) and (7) become 
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The ansatz approach will be applied to this pair of 

equations to retrieve the corresponding bright, dark and 
singular soliton solutions. 

 
3.1.1 Bright solitons 
 
In this section, the case where both components (17) 

and (18) support bright solitons is considered. Thus, the 
assumption for the wave profile is 

 
τ1sech11

pAP =                                (19) 
 
and  
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τ2sech22
pAP =                    (20) 

with  
 

)( vtxB −=τ                        (21) 
 
where jA  for 2,1=j  and B  represent respectively the 
amplitude and inverse width of the soliton. As was stated 
previously, v stands for the soliton speed. Substitution of 
(19) and (20) reduce (17) and (18) to 
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and 
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Next, from (22), equating the exponent pair 

)2,2( 121 ++ ppp  while from (23), equating the 

exponent pairs )2,2( 221 ++ ppp  and )2,3( 22 +pp   
leads to 

 
121 == pp                            (24) 

 
Setting the coefficients of the linearly independent 

functions, τlp j +sech  where 2,1=j  and 2,0=l ,  to 
zero in (22) and (23) leads to the wave numbers of the 
solitons being given by 
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subject to the constraints (12) and (13). Similarly, with the 
aid of (10) and (11) the width of the solitons can be 
retrieve as 
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which in turn introduce the constraints 
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By equating the two values of the width B  from (27) 

and (28) one have 
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which is valid whenever 
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Thus the bright 1-soliton solution to the cascaded 

system with STD (15)–(16) is given by 
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and 
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The constraint conditions that must remain valid in 

order for the bright soliton to exist are (12), (13), (29), (30) 
and (32). 

 
3.1.2 Dark solitons 
 
For dark solitons the assumption for the wave profile 

of the two components is 
 

τ1tanh11
pAP =                       (35) 

and 
τ2tanh22

pAP =                      (36) 
 



168                                      J. Vega-Guzman, Q. Zhou, A. A. Alshaery, E. M. Hilal, A. H. Bhrawy, A. Biswas 
 
where τ  is being defined as in (21) . However for dark 
solitons the parameters 1A , 2A  and B  are considered 
herein as free parameters and v   correspond to the dark 
soliton speed. Substitution of (35) and (36) into (17) and 
(18) lead to 
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From (37), equating the exponent pair 

)2,2( 121 ++ ppp  and from (38), equating the 

exponents )2,3( 22 +pp   leads to (24).  The stand alone 

linearly independent functions are τ2tanh −jp  for 
2,1=j   whose coefficients, when set to zero, also lead 

to (24). Thus, from (37) and (38), setting the coefficients 
of the linearly independent functions τlp j +tanh  for 

2,1=j  and 2,0=l , to zero gives the wave number of 
the dark solitons as 
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subject to the constraints (12) and (13). Similarly, with the 
aid of (10) and (11) the width of the solitons can be written 
as 
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which in turn introduce the constraints 
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By equating the two values of the width B   from (41) 
and (42) one retrieve again relation (31) with 
corresponding constraint (32). Therefore the dark 1-soliton 
solution to the cascaded system with STD (15)–(16) is 
given by 
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The constraint conditions that must remain valid in 

order for the dark solitons to exist are (12), (13), (32), (43) 
and (44). 

 
3.1.3 Singular solitons 
 
For singular solitons the assumption for the wave 

profile of the two components is  
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and  
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where τ  is being defined as in (21), while the parameters 

1A , 2A  and B  are considered herein as free parameters. 
Upon substituting (47) and (48) into (17) and (18) one get 
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Now, from (49), equating the exponent pair 
)2,2( 121 ++ ppp  while from (50), equating the 

exponent pairs )2,2( 212 ++ ppp  and )2,3( 22 +pp   

leads to the same value for 1p  and 2p  as in (24).  Next, 
setting the coefficients of the linearly independent 
functions, τlp j +csch  where 2,1=j  and 2,0=l ,  to 
zero in (49) and (50) leds to the wave numbers of the 
solitons being given by 
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subject to the constraints given in (12) and (13). In a 
similar manner, with the aid of (10) and (11), the width of 
the solitons can be retrieve as in (41) and (42) with 
corresponding constraints (43) and (44). Consequently one 
can retrieve relation (31) with corresponding constraint 
(32). 

Therefore the dark 1-soliton solution to the cascaded 
system with STD (15)–(16) is given by 
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The constraint conditions that must remain valid in 

order for the singular solitons to exist are (12), (13), (32), 
(43) and (44). 

 
3.2 Power law 
 
Power law nonlinearity is typically observed in 

semiconductors for low powered nonlinearities. Here, 
nssF =)( , where n represents the strength of 

nonlinearity. In this case, stability issue dictates 
20 << n  and also 2≠n   in order to avoid self-

focusing singularity [4, 5].  Thus, the system (1)–(2) is 
rewritten as 
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respectively.  By substituting (3) and (4) into (55) and (56) 
the imaginary portions remain unchanged as in (8) and (9), 
while the resulting real parts obtained are 
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In order to analyze equations (57) and (58) the ansatz 

approach will be adopted depending on the type of solitons 
to be considered. 

 
3.2.1 Bright solitons  
 
For bright solitons, the starting hypothesis is the same 

as that of Kerr law nonlinearity given by (19) and (20) 
along with (21). After substitution, (57) and (58) reduce to 
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Then, from (59), equating the exponent pair 

)2,2( 121 ++ pnpp   while from (60) equating the 

exponent pairs from )2,)12(,2( 1222 npppnp +++  
leads to 
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Setting the coefficients of the linearly independent 

functions τlp j+sech  where 2,1=j  and 2,0=l , to 
zero in (59) and (60) leads to the wave numbers of the 
solitons being given by 
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and 
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subject to the constraints (12) and (13).  Similarly, with the 
aid of (10) and (11) the width of the solitons can be 
retrieve as 
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which in turn introduce the constraints (29) and (30). By 
equating the two values of the width B  from (64) and (65) 
one have 
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which is valid whenever the constraint (32) holds. 
Therefore the bright 1-soliton solution to the cascaded 
system with STD (57)–(58) is given by 
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The constraint conditions that must remain valid in 

order for this bright solitons to exist are (12), (13), (29), 
(30) and (32). 

 
3.2.2 Dark solitons 
 
For dark solitons the assumption for the wave profile 

of the two components remains intact as in (35) and (36). 
Thus, in this case the equations (57) and (58) modifies to 
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and 
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From (69), equating the exponent pair 
)2,2( 121 ++ pnpp and from (70), equating the 

exponents )2,2,)12(( 2212 +++ ppnppn  pairwise, 
leads to (61). Then setting the coefficient of the stand 
alone linearly independent functions τ2tanh −jp   to zero 
in (69) and (70) leads to (24).  Then, from (24) and (61), 
one can conclude that 1=n ,  mening that for the cascade 
system (1)-(2) with power law nonlinearity, dark solitons 
will exist provided the power law nonlinearity reduces to 
Kerr law nonlinearity. Consequently, all the results of dark 
solitons for Kerr law nonlinearity given by (39)–(46) will 
follow. 

 
3.2.3 Singular solitons 
 
To derive singular soliton solutions from (55)-(56) 

the assumption for the wave profile of the two components 
remain as in (47)-(48) with τ  being defined as in (21). 
Upon substituting (47) and (48) into (57) and (58) one 
obtains 
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and  
 

0csch

csch

csch))(1(

csch
)(

)(

2

12

2

2

)12(2
22

22
12

22
2222

2
22

2
2

2
222222

=+

+

−++

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−+

−−

+

+

+

τ

τ

τ

τ
κωκω

pnn

nppn

p

p

Ad

Ac

Bvbapp

Bvbap

ab

       (72) 

 

Now, from (71), equating the exponent pair 
)2,2( 121 ++ pnpp  while from (72), equating the 

exponent pairs )2,2( 212 ++ pnpp  and 

)2,)12(( 22 ++ ppn   leads to the same value for 1p  

and 2p  as in (61). Next, setting the coefficients of the 
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linearly independent functions, τlp j +csch  where 

2,1=j  and 2,0=l , to zero in (71) and (72) leds to the 
wave numbers of the solitons being given by 
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subject to the constraints (12) and (13).  Similarly, with the 
aid of (10) and (11) the width of the solitons can be 
retrieve as 
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which in turn introduce the constraints (43) and (44). By 
equating the two values of the width B   from (75) and (76) 
one retrieve again relation (66) with constraint as in (32). 
Therefore the singular 1-soliton solution to the cascaded 
system with STD (57)–(58) is given by 
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and  
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The constraint conditions that must remain valid in 
order for the singular solitons to exist are (12), (13), (32), 
(43) and (44). 

 
4. Conclusions 
 
This paper studied optical solitons in cascaded system 

where STD term is included in addition to GVD. STD 
provides well-posedness to the problem as indicated 
during 2012. The results are thus a generalized version of 
results that was reported earlier [4]. Bright, dark and 
singular 1-soliton solutions are reported in this paper along 
with the respective constraint conditions. These conditions 
provide the guarantee for the solitons to exist. 

There are several aspects to the future of this paper. 
Later, perturbation terms will be added to this paper and 
thus soliton solutions to cascaded system with perturbation 
terms will be reported. Additionally, numerical 
simulations will be obtained to illustrate the mathematical 
mechanism. These form a tip of the iceberg. 
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